Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl 2-[(3-chlorophenyl)hydrazono]-3-oxobutanoate

Hoong-Kun Fun, ${ }^{\text {a }}{ }^{\boldsymbol{m}} \ddagger$ Mahesh Padaki, ${ }^{\text {b }}$ Sowmya, ${ }^{\text {b }}$ Arun M. Isloor ${ }^{\text {b }}$ and Suchada Chantrapromma ${ }^{\text {c }} \S$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ${ }^{\text {c }}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: hkfun@usm.my
Received 9 April 2009; accepted 12 May 2009
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.049 ; w R$ factor $=0.139$; data-to-parameter ratio $=21.8$.

The molecule of the title oxobutanoate derivative, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$, adopts a keto-hydrazo tautomeric form and is roughly planar, the angle between the benzene ring and the mean plane through the hydrazone and aliphatic chain being $1.49(6)^{\circ}$. This planarity is further aided by the formation of an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond which generates an $S(6)$ ring motif. The aromatic ring and aliphatic chain have a trans configuration with respect to the $\mathrm{N}-\mathrm{N}$ bond. In the crystal packing, centrosymmetric $R_{2}^{2}(16)$ dimers are formed through pairs of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}(3-\mathrm{oxo})$ interactions. These dimers are linked together through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (carboxylrboxylate $\mathrm{C}=\mathrm{O}$) interactions into ribbons along the b-axis direction. These ribbons are stacked along the a-axis direction. The crystal also exhibits $\mathrm{Cl} \cdots \mathrm{Cl}[3.4988$ (6) \AA] and $\mathrm{C} \cdots \mathrm{O}$ [3.167 (2)-3.335 (2) Å] short contacts.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For background to the bioactivity and applications of oxobutanoate derivatives, see: Alpaslan et al. (2005a,b); Stancho et al. (2008). For related structures, see: Alpaslan et al. (2005a,b); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer, (1986).

[^0]

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$

$$
\gamma=83.734(2)^{\circ}
$$

$M_{r}=268.69$
Triclinic, $P \overline{1}$
$a=4.0826$ (2) \AA 。
$b=10.3196$ (4) \AA
$c=15.1469$ (6) \AA
$\alpha=88.336(3)^{\circ}$
$\beta=87.033(3)^{\circ}$
$V=633.31(5) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.39 \times 0.11 \times 0.06 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.890, T_{\text {max }}=0.981$
11030 measured reflections
3678 independent reflections
2732 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.139 \quad$ independent and constrained
$S=1.05$ refinement
3678 reflections
169 parameters
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 3$	$0.91(3)$	$1.87(3)$	$2.564(2)$	$132(3)$
C3-H3A $\cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.54	$3.211(2)$	129
C5-H5A $\cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.52	$3.433(2)$	166

Symmetry codes: (i) $x+1, y+1, z$; (ii) $-x+3,-y+2,-z+1$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

AMI is grateful to the Head of the Chemistry Department and the Director, NITK, Surathkal, India, for providing research facilities. SC thanks Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2150).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Erdönmez, A. \& Ocak Iskeleli, N. (2005a). Acta Cryst. E61, o3442-o3444.
Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Erdönmez, A. \& Ocak Iskeleli, N. (2005b). Acta Cryst. E61, o3648-o3650.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fun, H.-K., Chantrapromma, S., Padaki, M., Radhika \& Isloor, A. M. (2009). Acta Cryst. E65, o1029.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stancho, S., Georgi, M., Frank, J. \& Ilia, M. (2008). Eur. J. Med. Chem. 43, 694 706.

supplementary materials

Acta Cryst. (2009). E65, o1320-o1321 [doi:10.1107/S160053680901784X]

Ethyl 2-[(3-chlorophenyl)hydrazono]-3-oxobutanoate

H.-K. Fun, M. Padaki, Sowmya, A. M. Isloor and S. Chantrapromma

Comment

In recent years, the chemistry of hydrazones have been the subject of intense study mostly due to their biological significance. Some oxobutanoate derviatives exhibit cytotoxicity (Stancho et al., 2008). We previously reported the crystal structure of the ethyl 2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate (I) (Fun et al., 2009). As part of our on going research on the synthesis and biological activity of oxobutanoates, we report here the synthesis and crystal structure of the title compound, ethyl 2-[(3-chlorophenyl)hydrazono]-3-oxobutanoate (II).

The molecule of the title oxobutanoate derivative (II), $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$, adopts a keto-hydrazo tautomeric form and is roughly planar as indicated by the interplanar angle between the benzene ring and the mean plane through the hydrazone and aliphatic chain (N1-N2/O1-O3/C7-C12) being $1.49(6)^{\circ}$. The aromatic ring and aliphatic chain have a trans configuration with respect to the $\mathrm{N}-\mathrm{N}$ bond as evidenced by the torsion angle $\mathrm{C} 6-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$ being $179.76(15)^{\circ}$. The orientations of 3-oxobutanoate and ethyl group are determined by the torsion angles $\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9=3.3(3)^{\circ}$ and $\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$ $=168.38(10)^{\circ}$ [the corresponding angles are $2.81(15)^{\circ}$ and 170.6 (9) ${ }^{\circ}$ in (I) (Fun et al., 2009)]. The intramolecular $\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bond generates an $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995) (Table 1). The bond distances in (II) have normal values (Allen et al., 1987) and are comparable to those in closely related structures (Alpaslan et al., 2005a, b; Fun et al., 2009).

In the crystal packing (Fig. 2), the molecules are present as centrosymmetric $R_{2}{ }^{2}(16)$ dimers being joined by weak, centrosymmetrically related $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 3$ interactions involving the 3-oxo group (Table 1). These dimers are linked together through weak $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1$ (carboxylate $\mathrm{C}=\mathrm{O}$) interactions (Table 1) into ribbons along the b direction. These ribbons are stacked along the a direction. The crystal also shows $\mathrm{Cl} \cdots \mathrm{Cl}[3.4988$ (6) \AA; symmetry code: $2-x, 3-y,-z]$ and $\mathrm{C} \cdots \mathrm{O}[3.167$ (2)-3.335 (2) \AA; symmetry code: $-1+x, y, z]$ short contacts.

Experimental

The title compound was prepared by disolving 3-chloroaniline ($1.27 \mathrm{~g}, 10 \mathrm{mmol}$) in dilute hydrochloric acid (11.0 ml), obtained by mixing 4.5 ml of 12 M HCl and 6.5 ml water. The solution was cooled to 273 K in ice bath. To this, a cold solution of sodium nitrite $(1.6 \mathrm{~g}, 23.1 \mathrm{mmol}$ in 5.0 ml water) was added. The temperature of reaction mixture was not allowed to rise above 323 K . The diazonium salt solution so formed was poured through a filter into a cooled solution of ethylacetoacetate $(1.7 \mathrm{ml})$ and sodium acetate $(3.5 \mathrm{~g})$ in ethanol $(50 \mathrm{ml})$. The resulting yellow solid was filtered, washed with ice cold water, dried in air and recrystallized from methanol. Yield was found to be 1.70 g (70 \%), M.p. 360 K .

Refinement

The hydrazone H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA$ for aromatic, 0.97 for CH_{2} and $0.96 \AA$ for CH_{3} atoms. The $U_{\text {iso }}$ values were

supplementary materials

constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at $0.86 \AA$ from Cl 1 and the deepest hole is located at $1.19 \AA$ from C2. The difference electron density map also indicated possible tautomerism with the docking site (N2). However, the ${ }^{1} \mathrm{H}$ NMR experiments did not confirm this tautomerism. Moreover it would be difficult to model a resonance structure that would be in agreement with the presumed tautomerism.

Figures

Fig. 1. A view of the title molecule, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is depicted as a dashed line.

Fig. 2. The packing diagram of the title compound, viewed along the a axis, showing the molecular ribbons. Hydrogen bonds are drawn as dashed lines.

Ethyl 2-[(3-chlorophenyl)hydrazono]-3-oxobutanoate

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$
$M_{r}=268.69$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=4.0826$ (2) \AA
$b=10.3196$ (4) \AA
$c=15.1469$ (6) \AA
$\alpha=88.336$ (3) ${ }^{\circ}$
$\beta=87.033$ (3) ${ }^{\circ}$
$\gamma=83.734(2)^{\circ}$
$V=633.31(5) \AA^{3}$
$Z=2$
$F_{000}=280$
$D_{\mathrm{x}}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 360 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 3678 reflections
$\theta=1.4-30.0^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Needle, yellow
$0.39 \times 0.11 \times 0.06 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer

3678 independent reflections
Radiation source: sealed tube
Monochromator: graphite
$T=100 \mathrm{~K}$
φ and ω scans

2732 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=30.0^{\circ}$
$\theta_{\text {min }}=1.4^{\circ}$

Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.890, T_{\text {max }}=0.981$
11030 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.139$
$S=1.05$
3678 reflections
169 parameters
Primary atom site location: structure-invariant direct methods
$h=-5 \rightarrow 5$
$k=-14 \rightarrow 14$
$l=-18 \rightarrow 21$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0778 P)^{2}+0.1165 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.75 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.27$ e \AA^{-3}
Extinction correction: none

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cl1	$1.05405(13)$	$1.38226(4)$	$0.08494(3)$	$0.02972(15)$
O1	$0.6525(4)$	$0.66454(13)$	$0.29235(9)$	$0.0307(3)$
O2	$0.6912(3)$	$0.82739(12)$	$0.19234(8)$	$0.0233(3)$
O3	$1.2031(4)$	$0.86080(13)$	$0.46009(9)$	$0.0300(3)$
N1	$1.1619(4)$	$1.03691(14)$	$0.33708(10)$	$0.0199(3)$
N2	$0.9988(3)$	$0.95997(13)$	$0.29359(10)$	$0.0189(3)$
C1	$1.1244(4)$	$1.20062(16)$	$0.21705(11)$	$0.0207(3)$
H1A	1.0155	1.1475	0.1826	0.025^{*}
C2	$1.1889(4)$	$1.32389(17)$	$0.18746(12)$	$0.0207(3)$
C3	$1.3528(4)$	$1.40505(16)$	$0.23737(12)$	$0.0226(4)$
H3A	1.3904	1.4880	0.2163	0.027^{*}

C4	$1.4591(4)$	$1.35961(17)$	$0.31912(12)$	$0.0229(4)$
H4A	1.5732	1.4120	0.3528	0.027^{*}
C5	$1.3972(4)$	$1.23677(16)$	$0.35144(12)$	$0.0206(3)$
H5A	1.4676	1.2069	0.4065	0.05^{*}
C6	$1.2282(4)$	$1.15919(16)$	$0.30004(11)$	$0.0185(3)$
C7	$0.9369(4)$	$0.84466(16)$	$0.32803(11)$	$0.0190(3)$
C8	$1.0544(4)$	$0.79195(17)$	$0.41344(12)$	$0.0222(4)$
C9	$1.0059(5)$	$0.65572(17)$	$0.44501(13)$	$0.0260(4)$
H9A	1.1162	0.6367	0.4991	0.039^{*}
H9B	1.0961	0.5950	0.4010	0.039^{*}
H9C	0.7745	0.6484	0.4551	0.039^{*}
C10	$0.7486(4)$	$0.76823(16)$	$0.27083(11)$	$0.0201(3)$
C11	$0.5170(5)$	$0.75610(17)$	$0.13154(12)$	$0.0248(4)$
H11A	0.3238	0.7247	0.1613	0.030^{*}
H11B	0.6596	0.6819	0.1089	0.030^{*}
C12	$0.4174(5)$	$0.8497(2)$	$0.05750(14)$	$0.0331(4)$
H12A	0.3063	0.8057	0.0148	0.050^{*}
H12B	0.6103	0.8817	0.0297	0.050^{*}
H12C	0.2719	0.9214	0.0807	0.050^{*}
H1N1	$1.211(6)$	$1.016(3)$	$0.3940(17)$	$0.043(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0420(3)$	$0.0212(2)$	$0.0261(2)$	$-0.00346(18)$	$-0.00707(18)$	$0.00680(16)$
O1	$0.0434(8)$	$0.0159(6)$	$0.0353(7)$	$-0.0126(6)$	$-0.0079(6)$	$0.0038(5)$
O2	$0.0281(6)$	$0.0170(6)$	$0.0259(6)$	$-0.0066(5)$	$-0.0059(5)$	$0.0027(5)$
O3	$0.0436(8)$	$0.0185(6)$	$0.0290(7)$	$-0.0051(6)$	$-0.0111(6)$	$0.0037(5)$
N1	$0.0242(7)$	$0.0112(6)$	$0.0246(8)$	$-0.0018(5)$	$-0.0046(6)$	$0.0020(5)$
N2	$0.0187(7)$	$0.0114(6)$	$0.0264(7)$	$-0.0006(5)$	$-0.0016(6)$	$-0.0006(5)$
C1	$0.0244(8)$	$0.0139(8)$	$0.0245(8)$	$-0.0038(6)$	$-0.0033(7)$	$-0.0013(6)$
C2	$0.0242(8)$	$0.0145(8)$	$0.0225(8)$	$0.0019(6)$	$-0.0025(7)$	$0.0036(6)$
C3	$0.0271(9)$	$0.0108(7)$	$0.0303(9)$	$-0.0052(6)$	$-0.0001(7)$	$0.0018(6)$
C4	$0.0249(9)$	$0.0138(8)$	$0.0310(9)$	$-0.0042(6)$	$-0.0045(7)$	$-0.0044(7)$
C5	$0.0220(8)$	$0.0158(8)$	$0.0238(8)$	$0.0000(6)$	$-0.0039(6)$	$0.0007(6)$
C6	$0.0198(8)$	$0.0105(7)$	$0.0249(8)$	$-0.0006(6)$	$0.0001(6)$	$0.0008(6)$
C7	$0.0203(8)$	$0.0114(7)$	$0.0253(8)$	$-0.0016(6)$	$-0.0012(6)$	$0.0014(6)$
C8	$0.0250(8)$	$0.0149(8)$	$0.0257(9)$	$0.0009(6)$	$-0.0005(7)$	$0.0019(6)$
C9	$0.0306(9)$	$0.0157(8)$	$0.0310(9)$	$-0.0004(7)$	$-0.0026(7)$	$0.0052(7)$
C10	$0.0195(8)$	$0.0153(8)$	$0.0254(8)$	$-0.0014(6)$	$-0.0012(6)$	$0.0005(6)$
C11	$0.0276(9)$	$0.0185(8)$	$0.0292(9)$	$-0.0049(7)$	$-0.0045(7)$	$-0.0031(7)$
C12	$0.0368(11)$	$0.0286(10)$	$0.0349(11)$	$-0.0045(8)$	$-0.0116(9)$	$0.0023(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 2$	$1.7432(18)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 10$	$1.210(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.391(2)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.340(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{O} 2-\mathrm{C} 11$	$1.455(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.472(2)$

sup-4

supplementary materials

O3-C8	1.241 (2)
N1-N2	1.303 (2)
N1-C6	1.414 (2)
N1-H1N1	0.91 (3)
N2-C7	1.330 (2)
C1-C2	1.384 (2)
C1-C6	1.388 (2)
C1-H1A	0.9300
C2-C3	1.390 (2)
C3-C4	1.385 (2)
C3-H3A	0.9300
C4-C5	1.390 (2)
C10-O2-C11	115.77 (13)
N2-N1-C6	120.27 (15)
N2-N1-H1N1	119.6 (16)
C6-N1-H1N1	119.7 (16)
N1-N2-C7	120.48 (15)
C2-C1-C6	117.59 (15)
C2-C1-H1A	121.2
C6- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	121.2
C1-C2-C3	122.41 (16)
C1-C2-Cl1	119.40 (13)
C3-C2-Cl1	118.17 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.50 (15)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.8
C2-C3-H3A	120.8
C3-C4-C5	120.83 (15)
C3-C4-H4A	119.6
C5-C4-H4A	119.6
C4-C5-C6	118.93 (16)
C4-C5-H5A	120.5
C6-C5-H5A	120.5
C1-C6-C5	121.71 (15)
C1-C6-N1	121.53 (15)
C5-C6-N1	116.75 (15)
N2-C7-C8	124.09 (15)
N2-C7-C10	114.25 (15)
C6-N1-N2-C7	179.76 (15)
C6- $1-\mathrm{C} 2-\mathrm{C} 3$	0.4 (3)
C6-C1-C2- ${ }^{\text {- }} 1$	-178.31 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.9 (3)
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	179.64 (13)
C2-C3-C4-C5	-1.3 (3)
C3-C4-C5-C6	0.4 (3)
C2-C1-C6-C5	-1.3 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	177.53 (16)
C4-C5-C6-C1	0.9 (3)
C4-C5-C6-N1	-177.98 (16)

C7- ${ }^{\text {C10 }}$	1.485 (2)
C8-C9	1.502 (2)
C9-H9A	0.9600
C9-H9B	0.9600
C9-H9C	0.9600
C11-C12	1.501 (3)
C11-H11A	0.9700
C11-H11B	0.9700
C12-H12A	0.9600
C12-H12B	0.9600
C12-H12C	0.9600
C8-C7-C10	121.60 (14)
O3-C8-C7	119.29 (15)
O3-C8-C9	118.90 (16)
C7-C8-C9	121.80 (15)
C8-C9-H9A	109.5
C8-C9-H9B	109.5
H9A-C9-H9B	109.5
C8-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{O} 2$	123.08 (16)
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 7$	124.24 (16)
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 7$	112.67 (14)
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$	106.71 (14)
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	110.4
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	110.4
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	110.4
C12-C11-H11B	110.4
H11A-C11-H11B	108.6
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
H12A-C12-H12B	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5
N1-N2-C7-C8	-2.8 (3)
N1-N2-C7-C10	179.91 (14)
N2-C7-C8-O3	4.8 (3)
C10-C7-C8-O3	-178.06 (16)
N2-C7-C8-C9	-173.83 (16)
C10-C7-C8-C9	3.3 (3)
$\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 1$	-2.8(2)
$\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 7$	178.04 (14)
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 10-\mathrm{O} 1$	-175.72 (16)
C8-C7-C10-O1	6.9 (3)
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 10-\mathrm{O} 2$	3.4 (2)

supplementary materials

$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$-0.3(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10-\mathrm{O} 2$	$-173.96(15)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$178.63(15)$	$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$	$168.38(16)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 3$	$0.91(3)$	$1.87(3)$	$2.564(2)$	$132(3)$
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.54	$3.211(2)$	129
C5—H5A $\cdots \mathrm{O} 3^{\mathrm{ii}}$	0.93	2.52	$3.433(2)$	166
Symmetry codes: (i) $x+1, y+1, z ;($ (ii $)-x+3,-y+2,-z+1$.				

Fig. 1

supplementary materials

Fig. 2

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.
 § Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

